欢迎光临BETVLCTOR伟德入口!   

教授
当前位置: 首页 > 团队队伍 > 教授 > 正文
  • 姓名:贾云锋
  • 性别:男
  • 职称:教授
  • 职务:
  • E-mail:jiayf@snnu.edu.cn
  • 工作室:文津楼2314
性别 职称 教授
职务 邮箱 jiayf@snnu.edu.cn
工作室 文津楼2314

基本情况

  • 1. 2003年9月-2007年6月:bv伟德国际体育,数学与信息科学学院,博士;

  • 2. 2009年8月-2010年8月:台湾,国立中山大学,应用数学系,博士后;

  • 3. 2014年8月-2015年8月:美国,Wright State大学,数学与统计系,访问学者。

代表性学术论文

  • 1. Yunfeng Jia, et al., Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020): 3485-3507.

  • 2. Yunfeng Jia, Bifurcation and pattern formation of a tumor-immune model with diffusion, Math. Comput. Simulat., 178 (2020): 92-108.

  • 3. Yunfeng Jia, et al., Analysis on bifurcation and stability of a generalized Gray-Scott chemical reaction model, Phys. A, 528 (2019): 121394, 11pp.

  • 4. Yunfeng Jia, Computational analysis on Hopf bifurcation and stability for a consumer-resource model with nonlinear functional, Nonlinear Dyn., 94 (2018):185-195.

  • 5. Yunfeng Jia, et al., Analysis on the existence of the steady-states for an ecologica-mathematical model with predator-prey-dependent functional response, Comput. Math. Appl., 76 (2018): 1767-1778.

  • 6. Yunfeng Jia, Analysis on dynamics of a population model with predator-prey-dependent functional response, Appl. Math. Lett., 80 (2018): 64-70.

  • 7. Yunfeng Jia, et al., Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017): 4785-4813.

  • 8. Yunfeng Jia, et al., Effect of predator cannibalism and prey growth on the dynamic behavior for a predator-stage structured population model with diffusion, J. Math. Anal. Appl., 449 (2017): 1479-1501.

  • 9. Yunfeng Jia, et al., Effects of killing rate on global bifurcation in an oncolytic-virus system with tumors, J. Appl. Anal. Comput., 7 (2017): 264-277.

  • 10. Yunfeng Jia, Coexistent States of Reaction-Diffusion Systems, Science Press, Beijing, 2017.

  • 11. Yunfeng Jia, et al., Effects of the self- and cross-diffusion on positive steady states for a generalized predator-prey system, Nonlinear Anal. Real World Appl., 32 (2016): 229-241.

  • 12. Yunfeng Jia, et al., Coexistence of activator and inhibitor for Brusselator system in chemical or biochemical reactions, Appl. Math. Lett., 53 (2016): 33-38.

  • 13. Yunfeng Jia, et al., Analysis on bifurcations for the positive solutions of a predator-prey model with Beddington-DeAngelis functional response and non-selective harvesting, Acta Appl. Math., 143 (2016): 1-27.

  • 14. Yunfeng Jia, et al., Coexistence states of a periodic cooperative reaction-diffusion system with nonlinear functional response, Appl. Math. Model., 40 (2016): 2257-2264.

  • 15. Yunfeng Jia, et al., Positive solutions of a Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 68 (2014): 1220-1228.

  • 16. Yunfeng Jia, et al., Blow-up behavior of positive solutions for a chemical fuel ignition device model, J. Math. Phys., 55 (2014): 041502.

  • 17. Yunfeng Jia, et al., On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity, Commun. Pure Appl. Anal., 12 (2013): 1927-1941.

  • 18. Yunfeng Jia, et al., Spatial pattern in an ecosystem of phytoplankton-nutrient from remote sensing, J. Math. Anal. Appl., 402 (2013): 23-34.

  • 19. Yunfeng Jia, et al., Coexistence states of a three-species cooperating model with diffusion, Appl. Anal., 90 (2011): 1185-1202.

  • 20. Yunfeng Jia, et al., Positive solutions for a predator-prey interaction model with Hollings-type functional response and diffusion, Taiwanese J. Math., 15 (2011): 2013-2034.

教育科研项目

  • 1. 陕西省自然科学基础研究计划项目,2018JM1020,生物化学反应中算子微分系统的稳定性与斑图,2018.1-2019.12.

  • 2. 国家自然科学基金面上项目,12171296,异质环境下一类部分扩散的混合恒化器模型,2022.1-2025.12.

  • 3. 国家自然科学基金面上项目,11771262,一类空间异质的微生物生态学模型的动力学分析与模拟,2018.1-2021.12.

教育科研奖励

  • 1. 科研成果《反应扩散系统及其应用》获2017年度陕西高等学校科学技术奖励一等奖。

  • 2. bv伟德国际体育“优秀共产党员”、“教书育人先进个人”、“教学标兵”、“教学质量优秀奖”。

讲授课程

  • 1. 研究生:《分歧理论》、《非线性泛函分析》、《Sobolev》空间

  • 2. 本科生:《数学分析》、《偏微分方程》、《复变函数》、《线性代数》、《高等数学》


上一条:舒洪英 下一条:颉永建

关闭