欢迎光临BETVLCTOR伟德入口!   

学术活动
当前位置: 首页 > 学术活动 > 正文

数学与信息科学学院系列学术报告(一)

来源: bv1946伟德 发布时间: 2020-10-27 点击量:
  • 讲座人: 许庆祥教授、邓春源教授
  • 讲座日期: 2020-11-02
  • 讲座时间: 14:40
  • 地点: 腾讯会议 (ID:935 822 979)

报告题目一:Generalized parallel sum of adjointable operators on Hilbert C*-modules

报告人:  许庆祥教授

讲座时间:14:40

报告人简介:

许庆祥, 上海师范大学数理学院教授、博士生导师。19851989年本科就读于浙江师范大学数学系,1989年至1995年研究生就读于复旦大学数学研究所,师从严绍宗教授和陈晓漫教授。1995年到上海师范大学数学系工作至今。

近年来主要从事算子理论和矩阵方面的研究工作,被MathSinNet收录文章69, 部分文章发表于SIAM J. Numer. Anal., SIAM J. Matrix Anal. Appl., J. London Math. Soc., J. Operator TheoryLinear Algebra Appl.等期刊上. 目前担任期刊Advances in Operator TheoryFacta Universitatis, Series: Mathematics and Informatics的编委。

报告简介:

We introduce the notion of a tractable pair of operators as well as that of the generalized parallel sum in the setting of adjointable operators on Hilbert C^*-modules. Some significant results about the parallel sum known for matrices and Hilbert space operators are extended to the case of the generalized parallel sum. In particular, a factorization theorem on the parallel sum is proved, and a common upper bound of two positive operators is constructed in the Hilbert C*-module case. The harmonic mean for positive operators on Hilbert C*-modules is also dealt with. This is a joint work with C. Fu, M.S. Moslehian and A. Zamani.

报告题目二:On the parallel addition and subtraction of operators on a Hilbert space

报告人: 邓春源教授

讲座时间:16:00

报告人简介:

邓春源,华南师范大学教授、博士生导师。20002006年就读于bv伟德国际体育数学与信息科学学院,师从杜鸿科教授,先后获理学硕士学位和理学博士学位。20067月至今在华南师范大学工作,先后任讲师(2006)、副教授(2007)、教授(2011),博导(2014)。在此期间,从20129月到20139月在美国威廉玛丽学院进行学术访问。主要从事算子理论与算子代数方面的研究工作,在算子矩阵理论、幂等算子理论、算子的广义逆理论等方面取得了一系列研究成果。主持或参加多项省部级自然科学基金,已在国内外刊物上发表论文70余篇。

报告简介:

We extend the operations of parallel addition A:B and parallel subtraction A\div B from the cone of bounded nonnegative self-adjoint operators to the linear bounded operators on a Hilbert space. The basic properties of the parallel addition and subtraction were developed for nonnegative matrices in finite-dimensional spaces.However, without suitable restrictions, very little of the preceding theories will hold for bounded linear operators A and B acting in Hilbert space.

In this talk, generalization to non-selfadjoint operators is considered and various properties of parallel addition and subtraction are given. The common upper and lower bounds of positive operators by using the parallel sum are given.

 

关闭